Skip to main content

Event: How to Build a Full-Stack Recommender System

We invite you to join Jacopo Tagliabue, RecSys expert and former Director of AI at Coveo, and Hugo Bowne-Anderson, Outerbounds’ Head of DevRel, in our first live code along session to dive into how to build a production-grade RecSys.

The goal is to develop a relatively simple, effective, and general pipeline for sequential recommendations. We’ll show how you can use popular open-source libraries and tools including DuckDB, Gensim, Metaflow, and Keras to build a fully working cloud endpoint that serves predictions in real time, starting from raw data. We’ll be using the Metaflow sandboxes, so you can easily code along (think Colab but for MLOps)!

Using the Spotify Playlists dataset, you’ll learn how to

  • take a recommender system idea from prototype to real-time production;
  • leverage Metaflow to train different versions of the same model and pick the best one;
  • use Metaflow cards to save important details about model performance;
  • package a representation of your data in a Keras object that you can deploy directly from the flow to a cloud endpoint with AWS Sagemaker.

Recommender System DAG You can register for the event here. We hope to see you there!

Smarter machines, built by happier humans

The future will be powered by dynamic, data intensive systems - built by happy humans using tooling that gives them superpowers

Get started for free